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Review 

Quantifying microbial interactions: concepts, caveats, 
and applications 
Nittay Meroz1, Tal Livny1,2 and Jonathan Friedman1   

Microbial communities are fundamental to every ecosystem on 
Earth and hold great potential for biotechnological applications. 
However, their complex nature hampers our ability to study and 
understand them. A common strategy to tackle this complexity 
is to abstract the community into a network of interactions 
between its members — a phenomenological description that 
captures the overall effects of various chemical and physical 
mechanisms that underpin these relationships. This approach 
has proven useful for numerous applications in microbial 
ecology, including predicting community dynamics and stability 
and understanding community assembly and evolution. 
However, care is required in quantifying and interpreting 
interactions. Here, we clarify the concept of an interaction and 
discuss when interaction measurements are useful despite their 
context-dependent nature. Furthermore, we categorize 
different approaches for quantifying interactions, highlighting 
the research objectives each approach is best suited for. 
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Introduction 
Microbial communities are extremely complex; they are 
highly diverse species assemblages where the growth 
and activities of individuals are affected by those of 
others in the community and by their abiotic environ-
ment [1]. Studying such complex systems requires 

measuring and modeling at the right resolution — one 
that would not require probing every single cell but 
would still provide predictive and explanatory power [2]. 
A common approach that has long been used by ecolo-
gists is describing the behavior of a community as arising 
from a network of interactions between species. This 
approach has also gained popularity in microbial ecology, 
partially due to the availability of an array of techniques 
that enable measuring thousands of interactions in a 
single experiment [3–5]. However, these technical abil-
ities do not alleviate the conceptual challenges that ac-
company the study of interactions — what are the proper 
uses for interaction measurements, how to interpret 
them, and how to properly quantify interactions. Here, 
we aim to clarify the utility of microbial interactions, 
explore various approaches of quantification, and estab-
lish a connection between the two. 

What do we mean by ecological interactions? 
In the most general sense, biological interactions are 
mutual influences between individuals, where the pre-
sence or actions of one individual affect those of another. 
In ecology, we typically consider interactions as the ef-
fects individuals have on each other’s survival and re-
production rates [6]. These can be aggregated into 
interactions between populations, describing how one 
population affects the overall changes in the growth or 
abundance of another population. Importantly, such in-
teractions provide a phenomenological description of the 
effects populations have on each other’s growth, regard-
less of the underlying mechanisms — whether a change 
in growth is caused by one mechanism or another, the 
inferred interaction remains the same. Notably, this de-
finition excludes more mechanistic approaches, such as 
consumer-resource models or metabolic modeling, where 
species’ interactions are not modeled explicitly [7]. Fi-
nally, interactions represent causal effects rather than 
mere statistical relationships (such as correlations in 
abundances over space or time). Due to the inherent 
difficulty of inferring causal relationships from observa-
tional data (such as co-occurrence analysis) [8,9], here, we 
focus on interaction measures that rely on direct manip-
ulation of species abundances. 

Classic examples of interspecific interactions, such as the 
fox and the hare or flowers and pollinators, prime us to 
think of interactions as constant relationships that are 
intrinsic to the species involved. However, the interaction 
between two microbes typically involves multiple 
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mechanisms, is often mediated by the environment (e.g. 
consumption or secretion of nutrients), and is highly de-
pendent on species’ physiology in the given conditions  
[1,10,11]. Therefore, the interaction between bacterial 
species often changes dramatically with time [12], space  
[13], and species’ abundance [14] (Figure 1). For ex-
ample, the concentration of a single nutrient in the en-
vironment could shift facilitative relationships to 
competitive (or vice versa) [15,16]. The potentially ex-
treme sensitivity of interactions to conditions is further 
demonstrated by a recent study that found that the 
temperature at which two species grow before interacting 
determines which one would be the prey and which 
would be the predator [17]. Notably, a change in an in-
teraction over time can occur even in the absence of an 
external change in the environment due to the species’ 
own activities, such as resource consumption or secre-
tions, that change their environment or physiological 
states. For example, an interaction could be net-positive 
due to cross-feeding of micronutrients when carbon 
source is abundant, but shift to net-negative after most 
carbon source is utilized due to resource competition or 
accumulation of toxic metabolic by-products (Figure 1c). 

Therefore, it would be inaccurate to report ‘The 
Interaction’ between two species. Rather, an interaction 
is the net effect one microbe has on another’s re-
productive success in a specific time frame and a specific 
set of abiotic and biotic conditions. This raises the 
question — if interactions are so contingent on condi-
tions and time over which they are evaluated, is mea-
suring them simply ‘stamp collecting’? Or is something 
gained by doing so? 

Why measure interactions? 
Predicting composition and function 
The ultimate aim of the reductionist approach to com-
munity ecology is to predict the dynamics of a commu-
nity’s composition and function based on interactions 
within the community [18] (Figure 2a). This is most 
commonly attempted using the generalized Lotka–-
Volterra model (gLV), which has been shown to provide 
predictive value in simplified and natural communities  
[19–22]. However, microbial interactions involve non-
linear and nonadditive mechanisms, such as quorum 
sensing [14] and diauxic shifts [23], and even seemingly 
simple mechanisms of resource consumption and 

Figure 1  
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An interaction is the net effect one microbe has on another’s reproductive success in a specific time frame and a specific set of abiotic and biotic 
conditions. (a) An interaction can consist of multiple opposing mechanisms, and their effects on reproduction are aggregated. (b) In a multispecies 
community, interactions consist of both direct effects and indirect effects that are mediated through a third species. Indirect effects could be excluded 
under some experimental setups. (c) Due to transitions in physiological states and nonlinear dependencies on abundance, interactions could vary 
significantly in time but are commonly measured as the net effect over some time interval. (d) Interactions could vary significantly between individuals 
due to genetic or nongenetic variability within each population.   
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secretion may not be well approximated by linear pair-
wise interactions assumed by the gLV model [24], thus 
limiting the applications of such an approach. 

Even when making detailed predictions about commu-
nity dynamics and functions is not possible due to such 
complications, interactions can still provide valuable in-
formation. Interactions have long been studied in the 
ecology of higher organisms, where detailed predictions 
have not been regarded as the main goal [6]. Rather, 
these areas have typically focused on more qualitative 
features of the communities and the forces that shape 
them. Similar ideas have also recently been applied to 
microbial communities, as detailed below. 

Stability and invasibility 
Interactions are central to understanding community 
stability — whether species will coexist stably, go ex-
tinct, or fluctuate in abundance (Figure 2b) [25–28]. 
Theoretical work has linked community stability with 
the distribution of types, strengths, and correlations 

between interactions in a community [28]. For example, 
intransitive interactions are expected to lead to coex-
istence-promoting fluctuations [29], and local stability is 
predicted to decline with interaction strength and the 
proportion of positive interactions [30], whereas a 
skewed distribution composed of few strong and many 
weak interactions is predicted to enhance local stability 
and persistence [25]. Recent experimental work has 
validated some of these predictions in microbial com-
munities [26]. Similarly, the ability of communities to 
resist invasions has long been considered to be related to 
interactions [31], and recent studies have gained em-
pirical evidence for the connection and advanced our 
theoretical understanding of it [32,33]. Finally, mea-
suring interactions could also be used in order to identify 
keystone species that have a high impact on the stability 
and function of the community [34]. 

Community assembly and evolution 
Species interactions can provide insights into how 
communities were formed [35,36] and how they are 

Figure 2  
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Interactions are used in a range of applications in microbial ecology. (a) To predict the composition and functions of communities. (b) To study the 
ability of a community to withstand biotic and abiotic perturbations. (c) To gain insight into how communities are formed and how they are expected to 
evolve. (d) To elucidate the mechanistic basis of the effects species have on each other.   
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expected to evolve [37–39] (Figure 2C). For example, 
theory predicts that correlations between the way a 
species interacts with other community members could 
result solely from the assembly of a stably coexisting 
community, regardless of species-specific traits that 
drive the interactions [40]. There is also empirical evi-
dence that interactions within microbial communities 
are not randomly distributed, which may reflect their 
assembly or evolutionary history: interaction distribution 
can differ between sympatric and allopatric species [41], 
and interaction networks are often hierarchical [42]. 

Evolutionary theory makes predictions regarding how 
interactions would evolve. These include elucidating the 
conditions under which evolution leads to increased co- 
dependency through loss of redundant functions [37], 
evolutionary arms races [38], or niche differentiation  
[39]. Several of these predictions have recently been 
tested experimentally in microbial communities [43–47]. 
Since interactions affect community structure and 
function, understanding the feedback between the 
evolution of interaction and community properties has 
several implications, including predicting which com-
munities will have their function altered rapidly by 
evolution and which will maintain it for longer. Such 
predictions could inform the design of interactions that 
will select for desired functions, enabling improving 
community function using artificial selection [48]. 
However, a more general, predictive understanding of 
how changes in interactions lead to evolutionary changes 
in community function is still an ongoing challenge. 

Elucidating the mechanistic basis 
Measuring interactions can also help elucidate their 
mechanistic basis, and consistent changes in interactions 
across abiotic conditions suggest common mechanisms 
driving the interactions [15,16,49–51] (Figure 2d). For 
example, facilitation is more commonly observed in 
anaerobic conditions, and metabolic simulations suggest 
this is driven by secretion of more energy-rich metabolic 
by-products [50]; strains that are unable to grow on a 
specific carbon source are almost always promoted by 
growing strains, suggesting common cross-feeding in-
teractions [16]; and high carbon source concentrations in 
unbuffered environment could drive interactions toward 
stronger competition due to stronger pH modifications  
[49]. A mechanistic understanding of what drives inter-
actions is crucial for anticipating which interactions are 
likely to occur in novel conditions or how environmental 
changes would modulate interactions and may allow 
linking environmental conditions to interaction-driven 
community properties, thus alleviating some of the is-
sues regarding the contingency of specific interactions. 

Which information do we need in order to infer 
interactions? 
Since interspecific interactions are the effects species have 
on each other, measuring them is best achieved by directly 
manipulating species’ presence or abundance and quanti-
fying the resulting changes in abundances or growth rates. 
Manipulating community composition is straightforward in 
synthetic communities assembled in the laboratory but is 
more challenging in self-assembled communities. 
Ecologists have long manipulated species’ abundance in 
seminatural settings [6] (e.g. by removing or enclosing 
specific species), but such interventions have thus far not 
been common in microbial ecology. In contrast, quanti-
fying abundances and growth rates both in laboratory and 
natural settings is a common task in microbial ecology, and 
there are many established techniques for doing so [52], 
although these are more well established for well-mixed 
conditions and spatially structured communities, such as 
biofilms, are more challenging to quantify [53]. However, 
as interactions can vary greatly in time [12], space [13], and 
between individuals, one needs to consider what is the 
appropriate measurement technique. Measurement 
methods range from plating and counting colonies [3], 
which gives limited resolution as cultures can not be 
sampled too frequently, to microfluidic devices that enable 
real-time measurements at the level of a single cell [12,54]. 

After estimating growth in the presence, and absence, of 
a partner, there is still a need to decide how to quantify 
the interaction — that is, which interaction index should 
be reported and how it should be interpreted. 
Interaction indices can be classified into four levels — 
sign, semiquantitative, quantitative, and parametric (Figure 
3). While it may seem that the more informative level 
should always be preferred, more qualitative levels are 
typically easier to obtain and are more robust to technical 
and biological noise, making them more reproducible 
and their interpretation more consistent across modeling 
assumptions. Therefore, we argue that more qualitative 
measures should be preferred when they suffice to ad-
dress the research question at hand. 

Sign 
An interaction could be reported solely as being positive 
(facilitative) or negative (inhibitory). While simple, the sign 
of an interaction can hint at the underlying mechanism. 
For example, a positive interaction changing to a negative 
one in response to nutrient supplementation suggests 
cross-feeding [55]. Additionally, the frequency of interac-
tion signs can be related to the evolutionary processes 
shaping communities. For example, positive interactions 
are predicted to be scarce in unstructured environments  
[56]. Finally, the stability of a community can sometimes 
be inferred solely from interaction signs [30,57]. 
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Semiquantitative and quantitative 
Ecologists have developed several indices that are 
commonly used to quantify interaction strength that 
differ in their interpretation and statistical properties 
(Box 1). These indices are typically interpreted as an 
accurate quantitative estimate of the effect one partner 
has on another. For example, an estimated log response 
ratio of 1 would be interpreted as indicating that the 
presence of a partner causes the abundance of the af-
fected species to double. Such interpretation could often 
be important, for example, if researchers wish to un-
derstand whether communities adhere to some quanti-
tative stability criteria [57] or to study the additivity 

between interactions [58]. However, such interpretation 
also demands care for the biases that could arise from 
both measurements and indices (Box 1). 

One could also interpret the estimated indices as semi-
quantitative. That is, as a representation of the order-of- 
magnitude estimate of the interactions’ strength. Such 
interpretation has the benefit of not committing to the 
accuracy or linearity of the measurement method. Many 
of the goals we’ve mentioned above require no more 
than a semiquantitative measurement. For example, 
measuring how interactions evolve [59] or how they 
change due to environmental factors [49] typically 

Figure 3  
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Interaction indices can be classified into four levels. Sign: a qualitative assessment of whether the interaction resulted in a net increase or decrease in 
reproductive success. Semiquantitative: an estimate of the order-of-magnitude of interaction strength and which interactions are stronger than others. 
Quantitative: a quantitative estimate that gives an interpretable number. Parametric: a quantitative estimate that corresponds to some parameter in a 
dynamical model. In this case, the interaction is not a number, but a function. The plot depicts three response functions that are commonly used to 
describe interactions.   
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Box 1  

Generally, interaction indices quantify the effect of one species on another by comparing the growth of the affected species (i) with and without the 
affecting species (j). While such indices, including the ones discussed below, typically consider the change in abundances, theoretical models 
typically consider changes in growth rates, and care should be taken when comparing theoretical predictions to empirically determined interactions. 
For simplicity, we consider the case where the comparison is between the affected species’ abundance when grown alone (monoculture, Mi) and 
together with the affecting species (coculture, Ci). However, the indices discussed below also apply when other species are present. 

Interaction indices differ in how the comparison between monoculture and coculture is quantified and whether the abundance of the affecting 
species (Cj) is considered. Therefore, they differ in their mathematical properties, and more importantly, in how they should be interpreted. Below, 
we discuss the main differences in the context of four commonly used indices (Figure B1): Raw Difference (RD), Paine’s Index (PI), Log Response 
Ratio (LRR) [63], and Relative Intensity Index (RII) [64]. 

Perhaps, most significant is whether an index is normalized to the abundance of the affecting species (Cj). Non-normalized indices, such as RII and 
LRR, describe the overall influence of the entire affecting population without considering its size. Normalized indices, such as PI and RD, describe 
the influence per unit of affecting species and are therefore affected by the way in which abundances are quantified. For example, a normalized 
index may give the effect per individual, or per unit of biomass, per 16S rRNA count. Notably, indices can readily be modified from population-level 
to per-capita and vice versa. Some of these modifications are common in the literature. For example, the per-capita version of LRR is often referred 
to as the Dynamic Index [63]. Nonetheless, deciding whether to use a population-level or per-capita index can have a significant effect on the 
interpretation of an interaction, as rare species could exert strong per-capita effects, and abundant species, seemingly strongly interacting, could 
be revealed to have a weak per-capita effect. 

Indices also differ in the range of possible values and in how they vary with changes in monoculture and coculture abundances. For example, RII is 
bound between −1, and 1, while LRR could increase or decrease to infinity. Per-capita indices are typically bound by the minimal value of 
abundance of the affecting species. Some indices, such as PI, are asymmetrical: PI is bound for negative interactions, but positive interactions 
could be infinitely strong. This asymmetry makes some sense — the strongest negative interaction is one where only one individual of population j 
is needed in order to drive population i to extinction, while any increase in abundance due to a positive interaction is theoretically possible. 
However, when using PI one should consider its asymmetry when interpreting the results — positive interaction might seem stronger than negative 
interactions merely due to this property. Many indices, such as PI and LRR, are undefined when the affected species cannot grow alone (Mi = 0). 
Therefore, these indices could not be used to quantify obligate facilitation. Even when populations are small but detectable, these indices should 
be used with care, as they are highly sensitive to biological and technical noise that occurs in small populations. Finally, some indices correspond 
to an interaction parameter in a dynamical model when some conditions are met. Both PI and RD are equivalent to a gLV interactions parameter, 
given that the community has reached a steady state (Supplementary Materials 1). 

So, when should each index be used? When choosing an index, one first needs to acknowledge that there is usually no clear right choice and that 
it ultimately depends on the nature of the data and question at hand. However, some guidelines could still be given: (i) when communities are far 
from equilibrium, using an absolute index is likely of limited use as the measured interaction would depend strongly on the choice of initial 
abundances. Per-capita indices should be less sensitive, at least if the functional response is close to linear. (ii) When one of the organisms grows 
poorly, it is better to use an index that is defined at zero growth (e.g. RII). (iii) When one aims to use some model (e.g. for predicting community 
dynamics), it is important to use an index that corresponds to this model.   
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requires understanding when interactions are stronger or 
weaker, and the precise magnitude of difference is of 
less interest. Likewise, some properties of community 
dynamics, such as time delays or oscillation, can be 
linked to the topology of the interaction network, re-
gardless of their exact strength [60]. Finally, detecting 
keystone species can be achieved without exact quan-
tification of interaction strength. While such interpreta-
tion of the interaction measurement is generally 
insensitive to the choice of index, it is sensitive to 
whether the interaction is quantified as the overall effect 
of one population on the other or is normalized to the 
abundance of the affecting species (the per-capita effect 
of one population on the other; Box 1). 

Parametric 
When trying to predict how a community changes in 
time or in response to perturbations in species abun-
dances, one typically needs to quantify interactions in a 
way that represents specific parameters in a dynamic 
model — most commonly, gLV (reviewed recently [61]). 
For this purpose, interactions need to represent the ef-
fect of one species on another’s growth as a function of 
their abundances, rather than the overall net effect over 
some time. Inferring a parametric interaction can be 
challenging, as it requires large amounts of data, typi-
cally a time series, as well as selecting the correct para-
metric model (e.g. whether the effects are linear or 
saturating) or at least a reasonable approximation 
thereof. Nonetheless, there are instances where such 
models have some predictive value [19,20,22]). 

Conclusions 
Complex systems can be studied at multiple different 
levels, from the details of their basic building blocks to 
an effective description of the entire system as a whole. 
Different levels of description each have their merits 
and limitations, so choosing the ‘the right’ level depends 
on the research’s specific aims. Mechanistic approaches 
such as consumer-resource models [62] or more holistic 
ones, such as statistical modeling [7], have recently 
gained traction in microbial ecology. Interactions are an 
intermediate between mechanistic and holistic ap-
proaches that provide some of the intuition about how a 
systems’ properties emerge from its constituents while 
not requiring as much detailed knowledge about the 
system as required by more mechanistic models. 
Therefore, we argue that interactions, if properly quan-
tified and interpreted, remain an essential tool in the 
arsenal of microbial ecologists. 
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